Journal of Organometallic Chemistry, 375 (1989) C9-C12 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20171PC

Preliminary communication

Reaktionen mit sterisch gehinderten Stannylphosphinen: Synthese des ersten Zinn-substituierten Diphosphens

Dieter Hänssgen *, Heinz Aldenhoven und Martin Nieger

Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Straße, D-5300 Bonn (B.R.D.) (Eingegangen den 19. Juni 1989)

Abstract

A stable stannylated diphosphene, t-Bu₃SnP=P(C₆H₂-2,4,6-t-Bu₃), was prepared from 2,4,6-t-Bu₃C₆H₂PCl₂ and t-Bu₃SnPHLi in the presence of Et₃N. The novel diphosphene was characterized by NMR (¹H, ³¹P, ¹¹⁹Sn) and mass spectroscopy and its molecular structure determined by X-ray crystallography (space group $P2_1/c$, Z = 4).

Die Spaltung der P-Elementbindung funktioneller Diphosphene EP=PR (E = z.B.Me₅C₅, NR₂ oder SiMe₃) durch Substitutions- [1,2] und Kondensationsreaktionen [3] hat sich als Syntheseprinzip zur Herstellung weiterer Verbindungen mit R-P=P-Strukturelement bewährt. Stannylierte Diphosphene R₃SnP=PR, bislang noch unbekannt, sollten aufgrund ihrer reaktiven Sn-P-Bindung [4] für analoge Reaktionen besonders geeignet sein.

Einen einfachen Zugang zu dieser Stoffklasse ermöglicht die Umsetzung sterisch belasteter Lithium-stannylphosphide R_3 SnPHLi mit Organodichlorphosphanen in Gegenwart einer Hilfsbase. So erhält man durch Reaktion äquimolarer Mengen Lithium-tri-t-butylstannyl-phosphid [5*], 2,4,6-Tri-t-butylphenyl-dichlorphosphan und Triethylamin das 2,4,6-Tri-t-butylphenyl-tri-t-butylstannyl-diphosphen (I) (Gl. 1). Die bei Raumtemperatur beständige Verbindung fällt beim Abkühlen der Reaktionslösung (Diethylether) in Form violetter Kristalle aus (Fp. 144°C, Ausb. 62%).

^{*} Literaturzitate mit einem Sternchen verweisen auf eine Anmerkung im Literaturverzeichnis.

t-Bu₃SnPHLi + RPCl₂
$$\xrightarrow{+ Et_3N}_{- LiCl, - Et_3NH)Cl}$$
 t-Bu₃Sn $P = P^{-R}$ (1)

$$(R = 2, 4, 6 - t - Bu_3C_6H_2)$$

$$t-Bu_{3}SnPHLi + t-Bu_{2}SnCl_{2} \xrightarrow[-LiCl]{} t-Bu_{3}SnP - Sn-t-Bu_{2} \qquad (2)$$

$$H Cl$$

$$t-Bu_{3}SnP = Sn-t-Bu_{2} \xrightarrow[-Et_{3}NH)Cl$$

Zusammensetzung und Struktur von I sind durch Elementaranalyse (Gef.: C, 60.17; H, 9.55. Ber.: C 60.31; H, 9.45%), das Massenspektrum (m/e = 541 ($M^+ - t$ -Bu, 14%)), NMR-Spektren sowie durch Röntgenstrukturanalyse gesichert.

Im ¹H-NMR Spektrum von I: ((CDCl₃): δ 1.38 (s, 27H, t-Bu₃Sn), 1.42 (s, 18H, o-t-Bu), 1,29 (s, 9H, p-t-Bu), 7.41 ppm (s, 2H, C₆H₂); ³J(¹HCC^{117/119}Sn) 60/62 Hz) stimmen Lage und rel. Int. der integrierten Signale mit der angegebenen Formel überein. Das ³¹P-NMR-Spektrum ((CDCl₃): δ 465.71 (P^A) 446.57 ppm (P^B); ¹J(P-P) 607.9 Hz) zeigt erwartungsgemäß ein Dublett in einem Bereich chemischer Verschiebung, der dem bekannter organyl-subst. *trans*-Diphosphene entspricht [7]. Das ¹¹⁹Sn-Signal erscheint aufgrund der Kopplung mit zwei nicht-äquivalenten P-Atomen als Doppeldublett ((C₆D₆): δ – 23.83 ppm (dd); ¹J(¹¹⁹Sn³¹P) 904.4, ²J(¹¹⁹Sn³¹P) 51.2 Hz).

Fig. 1. Molekülstruktur von I. Bindungslängen (pm) und -winkel (°) (in Auswahl): P(1)-P(2) 203.1(3), P(1)-Sn(1) 254.6(2), P(2)-C(1) 187.1(7); Sn(1)-P(1)-P(2) 100.6(1), P(1)-P(2)-C(1) 102.2(2); Torsionswinkel Sn(1)-P(1)-P(2)-C(1) 179.1(2).

Für die Größe des ¹¹⁹Sn-Shifts t-Bu₃Sn-subst. Zinn-Phosphorverbindungen sind Koordination und Bindung am λ^3 -P-Atom offenbar von untergeordneter Bedeutung, da, unabhängig von der Koordinationszahl 2 oder 3 und der Substituentenart, ähnliche chemische Verschiebungen auftreten. Hinweise auf die Koordinationssituation im t-Bu₃Sn-P-Strukturelement geben jedoch die ¹¹⁹Sn-³¹P-Kopplungskonstanten, die mit zunehmender sterischer Belastung des Sn-Atoms anwachsen (Werte der ¹J(¹¹⁹Sn-³¹P)-Kopplung in Klammern): t-Bu₃SnPH₂ (625.6), t-Bu₃SnPH(SiMe₃) (859.0), t-Bu₃SnPH-t-Bu (897.0), (I) (904.4), t-Bu₃SnPHSn(t-Bu₂)Cl (920.0), t-Bu₃SnP(SiMe₃)₂ (1027.8), t-Bu₃SnP(t-Bu)SiMe₃ (1111.2 Hz) [6,8].

Verbindung I kristallisiert monoklin mit *a* 915.9(3), *b* 3274.8(9), *c* 1137.7(2) pm; β 97.68(2)°; Raumgruppe P2₁/*c* (Nr. 14); *V* 3.382 nm³; *Z* = 4 [9*].

P-P-Doppelbindungslänge und die Valenzwinkel an den P-Atomen (Fig. 1) sind mit den bei symmetrisch subst. *trans*-Diphosphenen gefundenen Werten vergleichbar [7,10]. Die Atome des *trans*-konfigurierten SnP=PC-Bindungssystems liegen in einer Ebene, die orthogonal zur Ringebene des Arens steht. Der P-Sn-Bindungsabstand liegt in einem, auch bei cyclischen Sn-P-Verbindungen gefundenen Bereich [6,11] (P-Sn-Bindungsabstände acyclischer Verbindungen wurden zuvor noch nicht bestimmt).

Der Versuch, t-Bu₃SnPHLi und t-Bu₂SnCl₂ in Gegenwart von Et₃N nach Gl. 2 zum Phosphastannen t-Bu₃SnP=Sn-t-Bu₂ zu kondensieren, blieb erfolglos. Zwar bildet sich das Zwischenprodukt t-Bu₃SnPHSn(t-Bu₂)Cl (Fp. 159°C; Ausb. 58.8%), das jedoch weder mit Et₃N noch mit Lithiumorganylen zur gewünschten Verbindung dehydrochloriert werden konnte: Mit Et₃N oder t-BuLi erfolgt keine Reaktion, n-BuLi reagiert unter LiCl-Eliminierung und Sn-Alkylierung des t-Bu₂Sn-Restes.

Dank. Wir danken dem Fonds der Chemischen Industrie für Sachbeihilfen. Der Fa. Höchst AG/Werk Knapsack, D-5030 Hürth, danken wir für eine Chemikalienspende.

Literatur

- 1 P. Jutzi und U. Meyer, Phosphorus and Sulfur, 40 (1988) 275.
- 2 L.N. Markovski, V.D. Romanenko und A.V. Ruban, Phosphorus and Sulfur, 30 (1987) 447.
- 3 E. Niecke, O. Altmeyer und M. Nieger, J. Chem. Soc., Chem. Comm., (1988), 945.
- 4 H.P. Schumann, P. Jutzi und M. Schmidt, Angew. Chem., 77 (1965) 812; H.P. Schumann, P. Jutzi und M. Schmidt, ibid., 77 (1965) 912.
- 5 Hergestellt durch Reaktion von Tri-t-butylstannylphosphin [6] mit äquimolaren Mengen einer 1.6 M Lösung von Lithiummethyl.
- 6 D. Hänssgen, H. Aldenhoven und M. Nieger, J. Organomet. Chem., 367 (1989) 47.
- 7 A.H. Cowley und N.C. Norman in Progress in Inorganic Chemistry, Bd. 34, S.3ff, John Wiley & Sons, New York, 1986.
- 8 D. Hänssgen und H. Aldenhoven, noch unveröffentlicht.
- 9 Röntgenstrukturanalyse von I ($C_{30}H_{56}P_2Sn$): M = 597.4; violette Kristalle ($0.2 \times 0.25 \times 0.4 \text{ mm}^3$); $\mu(Mo-K_{\sigma}) 0.86 \text{ mm}^{-1}$; $d_{r\delta} = 1.17 \text{ g/cm}^3$; 4423 symmetrie-unabhängige Reflexe ($2\theta_{max}$, 45°), davon 3088 mit $|F| > 4\sigma(F)$ zur Strukturlösung (Patterson-Methode) und -verfeinerung (298 Parameter) verwendet; C-, P- und Sn-Atome anisotrop, H-Atome mit einem "riding"-Modell verfeinert; R = 0.048($R_w = 0.043$, $w^{-1} = \sigma^2(F) + 0.0002F^2$). Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftliche Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53945, der Autoren und des Zeitschriftenzitats angefordert werden.

- 10 P. Jutzi, U. Meyer, B. Krebs, M. Dartmann, Angew. Chem., 98 (1986) 894; A. Dubourg, J.-P. Declercq, H. Ranaivonjatovo, J. Escudié, C. Couret, M. Lazraq, Acta Cryst., C, 44 (1988) 2004.
- 11 B. Mathiasch und M. Dräger, Angew. Chem., 90 (1978) 814; A.H. Cowley, S.W. Hall, C.M. Nunn und J.M. Power, ibid., (1988) 874.